FLAVONOIDS OF SALVIA TOMENTOSA (LABIATAE)

A. Ulubelen and M. Miski
Faculty of Pharmacy, University of Istanbul, Turkey
and
P. Necman and T. J. Mabry
Department of Botany, University of Texas at Austin, Austin, Texas

Abstract

The following seven flavonoids were obtained from the leaves of Salvia iomentosa Mill. (syn. Salvia grandifora Etling) (Labiatae): 5-hydroxy-6,7, ${ }^{\prime}$, 4' $^{\prime}$ tetramethoxyfavone, cirsimaritin, jaceosidin, luteolin, luteolin 7 -glucoside, 6methoxyluteolin and a new compound 6 -methoxyluteolin 7 -glucoside.

Salria tomentosa Mill., widespread in the Mediterranean and Aegean regions of Turkey, has been used to reduce abdominal pains and to heal wounds. Since luteolin and its derivatives are known to have spasmolytic action $(1,2)$, their presence in this species, as reported here, may account for its use as a folk medicine. Salvia species have been studied for triterpene acids (3, 4), triterpene alcohols $(5,6)$, diterpenes ($7-11$), and flavonoids (12-14). This is the first chemical investigation of Salvia tumentusa.

EXPERIMENTAL ${ }^{1}$

Plant material.-Leaves of S. tomentosa were collected from Antakya in southeast Turkey. A specimen of the plant, which was identified by Prof. Dr. A. Baytop (Istanbul), is deposited in the Herbarium of the Faculty of Pharmacy, University of Istanbul (voucher no. ISTE 35146).

Extraction and isolation of the flatonoids.-Powdered leaves (0.5 kg) of S. tomentosa were extracted in a Soxhlet with petroleum ether ($\mathrm{bp} .30-60^{\circ}$), benzene, chloroform and ethanol, successively.

The petroleum ether fractions were combined and concentrated to dryness to give a residue of 25 g . After suspension of the material in acetone, insoluble hydrocarbons were removed by centrifugation. Triterpene acids were precipitated from the acetone solution by the following procedure: concentration of the acetone solution to dryness, resuspension of the residue in benzene, treatment of the resultant solution with ammonia and, finally, centrifugation. The supernatant benzene solution was extracted with 60% aqueous ethanol. When the material obtained from the latter extract was chromatographed on polyamide, it yielded 5-hydroxy-6,7,3',4'-tetramethoxyflavone.

The second extract of the plant material (benzene) was concentrated to a small volume, and the resultant concentrate was extracted with $60 F_{c}$ aqueous ethanol. The latter extract yielded 7.5 g of syrup and an ether extraction of this syrup gave 3 g of flavonoid material. The flavonoid mixture was separated on a polyamide column ($3 \times 75 \mathrm{~cm}$) using a water-ethanol gradient elution system beginning with water; the fractions which eluted with 50% aqueous ethanol yielded 8 mg of $5,4^{\prime}$-dihydroxy-6,7-dimethoxyflavone (cirsimaritin). The fractions which eluted with 60% aqueous ethanol yielded 50 mg of $5,7,4^{\prime}$-trihydroxy-6,3'-dimethoxyflavone (jaceosidin).

The third extract of the plant material (chloroform) contained mainly terpenoids and only traces of flavonoids while the fourth (ethanol) afforded, after workup, 12.5 g of a flavonoidrich syrup. The syrup was chromatographed on a polyamide column ($5.5 \times 30 \mathrm{~cm}$). Elution with water yielded glucose, while elution with 40% aqueous ethanol yielded 6 -methoxyluteolin $\overline{7}$-glucoside. Elution with 50% aqueous ethanol gave luteolin 7 -glucoside, while 60% aqueous ethanol gave 6 -methoxyluteolin and luteolin successively.

Chafacterization of 5 -hydroxy-6,7,3'4'-tetramethoxyflayone.-5-Hydroxy-6,7,3'4'-tetramethoxyflavone, $m p 189-190^{\circ}$ (lit. 189-191 $)$ (15), exhibited uv and pmr spectral properties closely comparable with those of an authentic sample: ms, $m / s \mathrm{M}^{-}: 358(100 \%), \mathrm{M}-15: 343$ ($\overline{1} 1$), $\mathbf{~} 1-18: 341(10), ~ \-43: 315(13), A_{1}: 196(6), A_{1}-15: 181$ (15) and $\mathrm{B}_{1}: 162$ (10). The identity

[^0]of the compound was confirmed by comparison with an authentic sample by tlc on polyamide (90% formic acid; $\mathrm{R}_{\mathrm{i}} 0.38$) and cellulose (Avicel) ($60 \% \mathrm{AcOH} ; \mathrm{R}_{\mathrm{f}} 0.90$).

Characterization of 5,4 '-dihydroxy-6,7-dimethoxyflavone (cirsimaritin).-5,4'-Di-hydroxy-6,7-dimethoxyflavone, mp 257° (lit. $255-257^{\circ}$) (16), exhibited uv and pmr spectral values similar to literature values (16); ms, $m / z \mathrm{M}^{+}: 314$ (100%), M-15: 295 (75), M-43: 271 (22), $\mathrm{A}_{1}-15: 181(20), \mathrm{B}_{1}: 118(20)$ and $\mathrm{B}_{2}: 131$ (8). (The ms fragmentation corresponded to that of a standard sample ${ }^{2}$.)

Identification of $\mathbf{5 , 7}, 4^{\prime}$-Trihydroxy- $6,3^{\prime}$-dimethoxyflavone (uaceosidin).- $5,7,4$ '-Tri-hydroxy-6,3'-dimethoxyflavone, $m p 223-224^{\circ}$ (lit. $219-221^{\circ}$) (17), showed uv spectral properties identical to those for jaceosidin; identification was confirmed by pmr and ms: pmr (DMSO-d) $\delta 3.8\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 6.65\left(\mathrm{~s}, \mathrm{C}_{3}-\mathrm{H}\right), 6.89\left(\mathrm{~s}, \mathrm{C}_{5}-\mathrm{H}\right), 7.05$ (br. $\left.\mathrm{s}, \mathrm{C}_{5} \cdot-\mathrm{H}\right), 7.4-7.6$ (br. m, $\mathrm{C}_{2}-\mathrm{H}$ and $\left.\mathrm{C}_{8}-\mathrm{H}\right) ; \mathrm{ms}, m / z, \mathrm{M}^{+}: 330(100 \%), \mathrm{M}-15: 315$ (56), M-18: 312 (45); M-43: 287 (29), $\mathrm{A}_{1}-15: 167$ (11), $\mathrm{B}_{1}: 148$ (12) and $\mathrm{B}_{2}: 151$ (5).

Strucutre of 6-Methoxyleteolin 7 -glecoside.-The new glycoside, mp 172-1740, afforded on hydrolysis (with 0.1 N HCl for 30 min) 6 -methoxyluteolin (tle, uv, ms comparison with an authentic sample) and glucose (pc comparison with a standard sample). The uv spectra of the glucoside established a $3^{\prime}, 4^{\prime}$-ortho-dihydroxyl system (uv spectra with AlCl_{3} and $\mathrm{H}_{8} \mathrm{BO}_{3}$). In addition, the bathochromic shift of 20 nm of Band I with $\mathrm{AlCl}_{3} / \mathrm{HCl}$ relative to Band I in MeOH indicated the presence of a $\overline{5}$-hydroxyl- 6 -methoxyl system (18). Thus, the glucose must be attached at the 7 position. The absence of a Band III peak in the NaOMe spectrum (19) and the lack of a Band II shift with NaOAc confirmed a 7 -O-substituent. The complete spectral data for 6 -methoxyluteolin 7 -glucoside are as follows: uv λ max (MeOH), $346,272,255$; NaOMe, $404,269,230(\mathrm{sh}) ; \mathrm{AlCl}_{3}, 424,335(\mathrm{sh}), 300(\mathrm{sh}), 276,240$ (sh); $\mathrm{AlCl}_{3} / \mathrm{HCl}$, 366,295 (sh), 264, 235 (sh); $\mathrm{NaOAc}, 400,300$ (sh), $256 ; \mathrm{NaOAc} / \mathrm{H}_{3} \mathrm{BO} \mathrm{O}_{3}, 375,261 \mathrm{~nm} ; \mathrm{pmr}$ (as TMS ether in $\left.\mathrm{CCl}_{4}\right) \delta 3.2-3.6\left(6 \mathrm{H}\right.$, br. m, glucose) , $3.75\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 5.05\left(\mathrm{~d}\right.$, glu- $\left.\mathrm{H}_{1}\right), 6.3\left(\mathrm{~s}, \mathrm{C}_{8}-\mathrm{H}\right)$, $6.65\left(\mathrm{~s}, \mathrm{C}_{8}-\mathrm{H}\right), 6.85\left(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.28\left(\mathrm{~d}, \mathrm{~d}, J=2\right.$ and $\left.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right)$ and $7.72(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\mathrm{C}^{\prime}{ }_{2} \mathrm{H}$) ; ms (as PDM ether), $m / z, \mathrm{M}^{+}: 597$ (73%), M-230 (M-[PDM-glu]); 367 (74), M-248 (M-[PDM-glu-CD $\left.{ }_{3}\right]$): 349 (100); $\mathrm{A}_{1}-15 ; 184$ (4), $\mathrm{B}_{1}: 168$ (14) and $\mathrm{B}_{2} ; 171$ (19); the series of ions due to the PDM-glucosyl moiety were also present: 230 (52), 196 (80) and 161 (62).

Identification of luteolin 7-gltcoside.-Luteolin 7-glucoside, mp 241° (lit. 258-260 ${ }^{\circ}$) (20), gave uv and pmr spectral results identical to a standard sample; ms (as PDM ether), $m / z \mathrm{M}^{+}: 567$ (88%), M-230 (M-[PDM-glucose]): 337 (96), $\mathrm{A}_{1}: 169$ (13), $\mathrm{B}_{1}: 168$ (24), 230 (53), 196 (90) and 161 (68). Hydrolysis yielded luteolin and glucose.

Identification of 6-methoxyluteolin.-6-Methoxyluteolin, mp 262° (lit. 258-262ㅇ) (21), exhibited uv spectral properties similar to those of an authentic sample; identification was confirmed by pmr and ms: pmr (DMSO- d_{6}) $\delta 3.8\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) ; 6.59\left(\mathrm{~s}, \mathrm{C}_{3}-\mathrm{H}\right) ; 6.66(\mathrm{~s}, \mathrm{C} 8-\mathrm{H}): 6.92$ $\left(\mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.3-7.5$ (br. $\mathrm{m}, \mathrm{C}_{2}-\mathrm{H}$ and $\left.\mathrm{C}_{6} 1-\mathrm{H}\right) \mathrm{ppm} ; \mathrm{ms}, m / z \mathrm{M}^{+}: 316(100 \%), \mathrm{M}-15: 301$ (86), M-18: M-43: 273 (73), $\mathrm{A}_{1}-15: 167$ (26), $\mathrm{B}_{1}: 134$ (7) and $\mathrm{B}_{2}: 137$ (13).

Identification of luteolin.-Luteolin exhibited uv, pmr, ms and tle properties identical to those of a standard sample.

ACKNOWLEDGMENT

A part of this study was supported by the National Science Foundation (Grant DEB 76-09320), The Robert A. Welch Foundation (Grant F-130), and the National Institutes of Health (Grant HD-04488).
Received 23 October 1978.

LITERATURE CITED

1. L. Horhammer, Congr. Sci. Farm. Conf. Commun. 21st, Pisa, 578 (1964); C. A., 61, 3571d (1964).
2. L. Lafon, Ger. Offen. 2.010.505 (1970); C. A., 73, 120501 t (1970).
3. C. H. Brieskorn and K. H. Eberhardt, Arch. Pharm., 286, 124 (1953).
4. A. Ultibelen and E. Ayanoglet, Phytochemistry, 15, 309 (1976).
5. A. G. Gonzales, B. M. Fraga and A. G. Ravelo, An. Quim., 68, 1433 (1972).
6. A. Ultbeles, C. H. Brteskorn and N. Ózdemir, Phytochemistry, 16, 790 (1977).
7. M. Nakao and T. Fíkúshima, J. Pharm. Soc. Japan, 54, 844; C. A., 29, 786 (1935).
8. C. H. Brieskorn, A. Fuchs, J. B. Bredenberg, J. D. McChesny and E. Wenkert, J. Org. Chem., 8, 29 (1964).
9. L. Rodriguez-Hahn, C. C. Martinez and J. Romo, Rei. Latinoamer. Quim., 4, 93 (1973).
10. A. G. Gonzales, B. M. Fraga, J. G. Luiz and A. G. Ravelo, Experentia, 29, 1471 (1973).

[^1]11. A. Patcdin, A. Romanova, W. S. Sokolow and G. Pribylowa, Planta Med. 24, 201 (1974).
12. A. Ulcbelen, S. Öztürk and S. Isildatici, J. Pharm. Sci., 57, 1037 (1968).
13. C. H. Brieskorn and W. Biechele, Arch. Pharm., 304, 557 (1971).
14. J. Rodriglez, H. Jello, L. Quijano, J. Calderon, F. Gomez, J. Romo and T. Rios, Rei. Latinoamer. Quim., 5, 41 (1974).
15. E. Bombardelli, A. Bonati, B. Gabetta and G. Mustich, Fitoterapia, 2, 35 (1972).
16. C. H. Brieskory and W. Biechele, Teirahedron Lett., 2603 (1969).
17. H. Wagner, L. HorhamMer, P. Hoer and L. Farkas, Tetrahedron Lett., 3411 (1969).
18. J. A. Mears and T. J. Mabry, Phytochemistry, 11, 411 (1972).
19. J. D. Bacon, T. J. Mabry and J. A. Mears, Rev. Latinoamer. Quim., 7, 83 (1976).
20. A. Stabustik, Acta Chim. Scan., 22, 2371 (1968).
21. C. H. Brieskops and W. Biechele, Tetrahedron Lett., 344 (1968).

[^0]: ${ }^{1}$ Spectra were recorded with the following instruments: UY: Yarian Techtron model 635; IR; Perkin-Elmer 577 grating model: NMR: Varian A-60A and Tarian HA-100; MS: Joel double focus instrument and DuPont 21-491. Melting points were recorded in a Reichert microscope instrument and are not corrected. Adsorbants used for tle and co were from Macherey-Nagel and E. Merck.

[^1]: ${ }^{2}$ The ms comparison with a standard sample was kindly done by Prof. J. Chopin on an AEJ MS 902.

